
e .  

N89-20060 

PRODUCTION SYSTEM CHUNKING IN SOAR: 
CASE STUDIES IN AUTOMATED LEARNING 

Final Report 

NASNASEE Summer Faculty Fellowship Program -- 1988 

Johnson Space Center 

Prepared By: Robert Allen, Ph.D. 

Academic Rank: Assistant Professor 

University & Department: Univeristy of Houston 
Dept. of Mechanical Engineering 
Houston, TX 77204-4792 

N A S AIJ S C 

Direct0 rate: Mission Support 

Division : Mission Planning and Analysis 

Branch: Technology Development 
and A p p I iica t io n s 

JSC Colleague: Robert T. Savely 

Date Submitted: 27 July 1988 

Contract Number: NGT 44-005-803 

2 -  1 



I 

ABSTRACT 

A preliminary study of SOAR, a general intelligent architecture 
for automated problem solving and learning, is presented. The 
underlying principles of universal subgoaling and chunking were 
applied to a simple, yet representative, problem in artificial 
intelligence. A number of problem space representations were 
examined and compared. It is concluded that learning is an inherent 
and beneficial aspect of problem solving. Additional studies are 
suggested in domains relevant to mission planning, as well as, in 
aspects related to SOAR itself. 

2 - 2  



available, the subgoal terminates and pops frorn the goal stack. The 
goal stack also serves as the anchor to information in working 
memory (WM). Each working memory element (WME) is connected to 
some goal in the stack and can be accessed only by specifying the 
connection from the goal to the WME via augmmtations. An example 
of one such connection is: 

(goal <g> %tate <s>) 
(state <s> "binding <b>) 
(binding <b> %ell c l 1  W e  <t l  >) 

where state and binding are the goal augmentations that provide the 
connection between the goal <g> and the value of the action attribute. 
A chunking mechanism is provided to summarize the system 
behavior in terms of subgoals, and also enables the system to learn 
aspects of problem solving related to subgoals. The overall 
architecture is presented in Figure 1. 

Some of the important characteristics of SOAR are: (1) 
separation between architecture level and the knowledge level; (2) 
problem-spaces for representing knowledge; (3) universal subgoaling 
to resolve impasses ; and (4) production system representation that 
serves as access paths to information in long term memory. In 
addition, there is no conflict resolution mechanism in SOAR. All 
matched productions are fired "in parallel" and add one type of WMEs 
to the working memory. The process of collecting available 
information is called the elaboration phase. The second type of WME 
is the preference element that is used by the architecture in the 
decision cycle to determine the next goal context. The decision 
procedure, sketched in Figure 2, controls the elaboration and decision 
cycles. More detailed descriptions can be found1 in elsewhere (1-3). 

PROBLEM DOMAIN 

SOAR'S capabilities are illustrated below in an output trace of 
the problem-solving process for the "eight-puzzle" problem. The 
board in the eight-puzzle is represented by nine cells occupied by 
tiles numbered one through nine with one blank cell. The numbers on 
the beginning of each line are the decision cycle numbers; 
elaboration cycles are not shown. The 8uild:P notation signifies a 

2 - 4  



INTODUCTION 

SOAR is a production system architecture for a system capable 
of exhibiting general intelligence. SOAR has three principal 
characteristics separating it from other architectures. These are: (1 ) 
SOAR can be used to solve a range of problems, from routine problems 
to open-ended problems; (2) SOAR applies a wide range of problem- 
solving methods required for these tasks; and (3) SOAR learns about 
aspects of the problem-solving process and is capable of reporting 
about its performance. 

This document summarizes the work performed in implementing 
simple, yet representative, problems in SOAR. One purpose of this 
exercise was to be acquainted with the SOAR architecture and 
implementation. In the course of this work, some general issues were 
raised and found to coincide with current research topics in SOAR. 

This paper is organized as follows. First, a brief description of 
SOAR is presented. Next, some "toy" AI problems are briefly described 
and their implementations in SOAR are presented. Penultimately, a 
comparison of some problems decompositions is examined and the 
affect of problem presentation on learning and performance is 
discussed. Finally, future studies that can be performed are 
recommended. 

SOAR: AN OVERVIEW 

SOAR is an architecture for exhibiting general intelligent 
behavior. SOAR has evolved from a series of production system 
architectures (1,2). SOAR is embedded in about 255 kilobytes of LISP 
code, and extends 100 kilobytes of modified OPS5code. 

In SOAR, each task is represented in problem-spaces. The 
problem solving process begins from an initial state, working through 
the state to subsequent states by applying operators. Stages in the 
problem solving process are characterized by a goal context, which 
consists of the current goal, problem-space, state and operator. 
When one stage in the problem-solving process does not have enough 
information, it creates a subgoal (hence the name "universal 
subgoaling") to collect the needed information. The new subgoal is 
then added to the goal stack that keeps track of the goals that were 
created for this problem-space. When the needed information is 

2-3 



. 

Soar Architecture 

Production 
Memory 

Working Memeory 

1 Decision Procedure 1-' 

F i g u r e  1 

2 - 4  a 



D e c i s i o n  P rocedure  

Decision 1 Decision 2 

Elaboration 
Phase 

Selects State, Goal, ’ 
Problem-space or 

Decision 

Procedure 

uiescence 

Gather 
Preferences 

interpret  
Preferences 

L 
+ 

Impasse 

I 
Create 
Subgoal 

Operator 

No conflict resol ition 
except refractory inhibition 

Replace 
Context 
Object 

. 

F i g u r e  2 

2 - 4 b  



new chunk (rule) being created dt ring the trace. The letters G, P, 0 
and S represent the current goal, problem-space, operator and state, 
respectively. 

Learn status: on all-goals print trace 

0 G:GI 
I P: P3 EIGHT-PUZZLE 
2 s : s 4  
3 0: 034 MOVE-TILE(C22) 

4 s: s35 
5 ===>G: GI85 (UNDECIDED OPERATOR TIE) 
6 P: PI86 SELECTION 
7 S:S42 
8 0: (047 046 045) 
9 
NO-CHANGE) 
10 P: P3 EIGHT-PUZZLE 
11 s: s35 
12 0: 040 MOVE-TILE(C12) 

n=>G: GI90 (EVALUATE-OBJECT (MOVE-TILE(C21)) OPERATOR 

2 - 5  



13 s: s53 
Duplicate chunk 
Build:P200 
Duplicate chunk 
Build: P202 
Build:P204 
Build:P205 
14 0: 041 MOVE-TILE(C21) 

15 S: S59 
16 0: 074  MOVE-TILE(C11) 

2 - 6  



17 S: S64 
18 0: 076 MOVE-TILE(C12) 

C12(S64) --> S70 

19 S: S70 
20 0: 080  MOVE-TILE(C22) 

C22(S70) --> S77 

21 s: s77 
goal SOLVE-EIGHT-PUZZLE achieved 

2 - 7  



> (p r i  n t-stats) 

Soar 4.4 (external release: created April 19, 1987) 
Run statistics on July 26, 1988 
81 productions (1345 / 5703 nodes) 
229.41 667 seconds elapsed (43.1 33335 seconds chunking overhead) 
21 decision cycles (10924.604 ms per cycle) 
46 elaboration cycles (4987.319 ms per cycle) 

(2.1 904762 e cycles/d cycle) 
21 1 production firings (1 087.2828 ms per firing) 

(4.5869565 productions in parallel) 
71 7 RHS actions after initialization (31 9.96747 ms per action) 
226 mean working memory size (339 maximum, 296 current) 
2890 mean token memory size (10696 maximum, 3893 current) 
22363 total number of tokens added 
18470 total number of tokens removed 
40833 token changes (5.61 841 34 ms per change) 

(56.71 25 changedaction) 

The particular implementation of this problem in SOAR requires 
twelve productions, which can be divided as follows: (1) four rules for 
setting-up the problem space; (2) one rule to create an operator 
instantiation; (3) two rules for applying an instantiated operator; (4) 
one rule for search control; (5) one rule for monitoring states; and (6) 
three rules for evaluating operators. While the rules described are 
specific to this problem, encoding other tasks typically involve a 
similar division of a problem and hence a similar division of rules. 

I 

I 

LEARNING 

The chunk below is an example of a rule that becomes part of 
I production memory during the session outlined above. 

2 - 8  



(SP P218 ELABORATE 
(GOAL <G1> "OPERATOR { <> UNDECIDED <Ob }) 
(OPERATOR <OS 

"NAME EVALUATE-OBJECT "ROLE OPERATOR 

"DESIRED <D1> "EVALUATION <El >) 
"SUPERPROBLEM-SPACE <P1> "OBJECT <01> "SUPERSTATE <S1> 

(PROBLEM-SPACE <P1> "NAME EIGHT-PUZZL.E) 
(OPERATOR <01> 

"NAME MOVE-TILE "BLANK-CELL <C2> "TILE-CELL 4 1  >) 
(STATE <S1> "BLANK-CELL <C2> "BINDING <B1> { <> <B1> <B2> }) 
(BINDING <B1> "CELL <C2>) 
(BINDING <B2> "CELL 4 1  > "TILE <T2>) 
(DESIRED <D1> "BINDING <D2>) 
(BINDING { <> <B1> <D2>} "CELL <C2>) 
(BINDING <D2> "TILE <T2>) 
--> 
(DISPLACED (MAKE EVALUATION <El> NUMERIC-VALUE 1) 

"(NLAM-MAKE (QUOTE (EVALUATION <El > NUMERIC-VALUE 1))))) 

In more transparent form the rule states: 

I F  any tile is being moved into its final position 
THEN the next state will yield an evaluation of 1, 

i.e., the next state will be evaluated favorably 

This particular rule is one that is created because of the current 
implementation; the search control rule creates a worst preference 
for those operators not placing tiles in their desired locations. Other 
search control productions are responsible for the creation of chunks 
more in line with their method of search control (4). 

The search control rules are of importance in the outcome of the 
problem-solving process. To explore the effect of these rules on the 
parameters to measure performance, sample runs were performed 
using three different search control strategies. The results are 
presented in Table 1. The third column refers to a search control 
procedure that rejects an operator that will move back a tile into its 
previous location. The fourth column refers to a search control 
mechanism that creates a worst preference to a tile that is to be 
moved out of its desired location. The fifth column corresponds to no 

2 - 9  



L r 0 
3 

tn c 

9 ‘5 

n 

T 
T 

c 
E 
Q) 

a 
> 
0 

- 
L 

E 
E 
a 
C 
Y 
.- 

tn c 

a 
.- 
E 
? 

m 
v) 

c + 

2 - 9  a 



prespecified search control strategy. Each row contains data for each 
type of run. The data contain the number of lproductions in the system, 
the elapsed time to complete the task, the number of decision cycles, 
the number of elaboration cycles, the number of production firings and 
the maximum number of working memory dements. The last row, 
corresponding to runs that have already "learned," indicates the 
number of chunks that were fired during a problem solving session. 
The numbers in parentheses indicate the amount of time required for 
ch un king. 

As expected, chunking added productions to each system. 
However, a learned system did not chunk again. Also as expected, a 
"stronger" search control mechanism (column Four) corresponded to a 
better overall performance: fewer cycles, fewer rule firings, more 
efficient memory and more efficient chunking The reason for this is a 
priori control of the preferences in the "vvorst*preference" strategy. 
Applying specific preference orientations in the search control 
strategy appears to be an effective way to structure a problem 
implementation (1,4). Finally, it is noted that even without a 
specified search control strategy (column Five), SOAR'S default 
strategy is sufficient to solve this problem prior to chunking. 

CONCLUSIONS 

A preliminary examination of SOAR has been performed and, 
from the above-mentioned results, the following conclusions are 
drawn: 

Learning is a beneficial aspect of automated problem.solving in 
that code can be made more efficient and previously 
unrecognized knowledge, in the form of chunks, can be created. 

Problem decomposition is the key to an efficient (or even 
su ccessf u I implementation) . The search control 
mechanism(s) used in a specific implementation strongly 
influences the problem-solving process and the learning 
process. 

2-1 0 



Measuring the difficulty of a problem is a nontrivial task. The 
performance criteria measured by SOAR need to be 
scrutinized before a definitive measure can be ascertained. 

It is clear that additional studies are needed, with more practical 
problems (such as those presented in (4)), to see if the SOAR 
architecture can be useful in NASA-related applications. 

Acknowledgment 

The author thanks Lui Wang, Aerospace Engineer for the Artificial 
Intell igence Section, for his assistance with using the 
microEXPLORERm and the Lisp environment. 

2-1  1 



References 

1. Laird, J.E., "SOAR User's Manual," Version 4, Xerox Palo Alto 
Research Center, Palo Alto, CA 1986. 

2. Laird, J..E., A. Newell and P.S. Rosenbloom, "SOAR: An 
Architecture for General Intelligence," Artificial Intelliaence, 33 
(1 987) 1-64. 

3. Laird, J., P. Rosenbloom and A.Newell, "Universal Subgoaling and 
Chunking, Kluwer Academic Press, 1986. 

4. Reich, Y. and S.J. Fenves, "Floor-system Design in SOAR: A Case 
Study in Learning to Learn," Technical Report EDRC-12-26-88, 
Carnegie-Mellon University, Pittsburgh, PA 1988. 

2-1 2 


